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Abstract: Inductive logic programming was applied to the analysis of spatial composition processes using an architectural space
montage technique. The complexly structured data of the spatial composition processes that consist of many objects, their
relationships, and their attributes were modeled with first-order logic. One architectural space montage technique experiment was
conducted on 14 architecturally trained students and on 14 untrained students. These experimental cases were analyzed by Progol,
which is one ILP system. 513 rules for the trained students and 458 for the untrained students were found. By comparing these rules,
we found contrastive characteristics between the two groups from four points of view: (1) extension method of chain of miniatures,
(2) relationship as basic unit of composition, (3) type of miniature, and (4) multiplicity of rules.

1. Introduction

In this study, the process of architectural design was analyzed by
inductive logic programming (ILP) (Muggleton and Raedt, 1994;
Lavrac and Dzeroski et al., 1999), which is a machine learning
technique based on first-order logic that executes inductive
reasoning and generalizes the results from examples to generate
new concepts.

In various contexts, it has been reported in the domain of
phenomenology or developmental psychology that humans have
unconscious spatial schemata that enable them to recognize
space (Merleau-Ponty, 1945; Piaget, 1963). In support of this
theory, it has been proposed that the human design process is
affected by such schemata that appear as the compositional
patterns of such architectural elements as walls, furniture,
buildings, and so on (Schulz, 1971; Bollnow, 1963). These
spatial schemata and compositional patterns could be important
factors to form culture. To create an architectural space suitable
for human recognition, to re-interpret existing architectures and
to understand culture, we must find the latent patterns of spatial
composition affected by the spatial schemata from a
psychological point of view. This is currently a key issue in the
architectural field.

From the above context, this study investigates the patterns
in the initial process of architectural design, which visualizes
individual mental images. We previously focused on discovering
the peculiar patterns of the architectural design process of
architecturally trained and untrained individuals (Sugiura and
Okazaki, 2002) and the relationship among their patterns and
Japanese architecture and landscapes (Sugiura and Okazaki,
2011). This paper focuses on the contrastive characteristics
between two groups.

Several studies on architectural design patterns have been
done. For example, the Shape-Grammar was defined as a set of
production rules that can generate floor plans in F. L. Wright’s
architectural style (Koning et al., 1981). The Shape-Grammar,

however, does not reflect the actual design process. In this paper,
actual design processes using an architectural space montage
technique (ASMT) were analyzed.

ASMT was developed by one of the authors to elucidate the
fundamental patterns of spatial composition that exist in human
beings. In an experiment using ASMT, participants composed
architectural spaces by placing such miniatures as walls and
furniture at a scale of 1:50 on a white board (Fig. 1). In this study,
we regarded a spatial composition process using this method as
an initial process of architectural design, which is the process of
visualizing individual mental images.

Fig. 1. Examples of models constructed using ASMT by an
undergraduate (left) and a kindergartener (right)

In one ASMT experiment, dozens to hundreds of miniatures
can be placed. Moreover, a newly placed miniature has many
relationships to the previously placed miniatures. It is difficult to
discover patterns by only relying on human inspection in such
complexly structured data as those in the spatial composition
process. Therefore, in this study, we applied Progol, one ILP
system, to identify the latent patterns of the spatial composition
process in ASMT. ILP has been applied to various fields,
including finding the patterns from spatial relational structures
(e.g., graphic design of magazine (Chiba, 1999), room
arrangements in a house (Mizoguchi, 1995), and molecular
models (King, 1995)). However, there has been no study that
tried to apply ILP to learning from such structures that include
ordinal relationships as the spatial composition process.
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In the rest of this paper, brief overviews of ASMT and
Progol are given in Sections 2 and 3. In Section 4, the spatial
composition process is modeled with the Entity-Relationship
(ER) model and described with first-order logic. In Section 5, the
spatial composition processes by architecturally trained and
untrained students are analyzed. The results of ASMT
experiments and rules discovered by Progol are shown. From
these rules, contrastive characteristics are discussed between the
two groups in Section 6. Finally, our conclusions and future
work are stated in Section 7.

2. ASMT

ASMT was originally developed in the context of psychotherapy.
Clinical psychological analysis has been undertaken on the
characteristic patterns of the spatial compositions formed by
schizophrenic patients, elementary school children, mentally
handicapped children, and kindergarteners (Okazaki et al., 1992a,
1992b, 1997, 1999). In ASMT, since architectural space is
composed by placing three-dimensional miniatures, participants
are not limited by their drawing ability and can readily express a
3D architectural space. Moreover, we can clearly observe the
steps in the design process.

The types of miniatures used in ASMT differ slightly
depending on the experimental groups. In this study, we prepared
the following 44 kinds of miniatures (Fig. 4): six kinds of styrene
walls of different lengths (1800, 2700, 3600, and 5400 mm) and
various colors (blue, red, yellow, green, white, gray, pink, ivory,
cream, mint, and grain) with various openings, mirror walls and
glass walls in lengths of 3600 and 5400 mm with the glass walls
in various colors (blue, orange, and clear), columns, twelve kinds
of furniture (e.g. table, sofa, carpet, shelf), six different sanitary
fixtures (e.g., sink, toilet, bathtub), four different human figures,
a dog and a cat, six types of vegetation (e.g., grass, conifers,
broadleaf trees, hedges), and five different architectural elements
(e.g., balcony, stairs). Fig. 2 shows examples of these miniatures.

In the experimental setting and procedure, a white board (60
by 90 cm) was placed horizontally on a desk in the experimental
room. Two smaller white boards (45 by 30 cm) were placed on
both sides of the larger board with miniature walls arranged on
top of the boards. The other miniatures were displayed on a shelf.

Subjects constructed a model of their “dream” house on the
large white board. The experiment ended when they informed the
experimenter that they were finished. The state of the model in
the experiment was constantly recorded by video camera.

e o~ T

Fig. 2. Miniatures used in ASMT experiment:
walls, furniture, sanitary fixtures, human and animal figures, vegetation,
and architectural elements

3. ILP and Progol
Progol, which is one ILP system created by Muggleton (1995),

combines Inverse Entailment with general-to-specific search
through a refinement graph and allows arbitrary Prolog programs
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as background knowledge and arbitrary definite clauses as
examples. Input data to Progol consist of a set of positive
examples £+, a set of negative examples E-, a set of background
knowledge BK, and the mode declarations used by Progol to
guide the process of constructing a generalization from examples.
From these data, hypotheses are constructed as Horn clauses.

Hypothesis H is complete if V e € E+: BK\UH E e,
where “E” means logical entailment. Hypothesis H is consistent
if Ve € E- BK\UH ¥ e. Hypotheses can predict whether
unknown examples belong to positive or negative examples.

In this paper, one version of Progol, P-Progol 2.7.5, was
used. P-Progol was implemented by Srinivasan and Rui in
Prolog based on the Progol algorithm (1999).

4. Modeling of Spatial Composition Process

To logically describe the design process, we defined a unit of the
spatial composition process as miniature placement with
relationships to the previously placed miniatures. The spatial
composition process is a set of miniature placements.

4.1. DATA MODEL

The spatial composition data by ASMT are complexly structured
and are collections of architectural objects with geometric
relationships. The spatial composition process data were
modeled with the ER model (Chen, 1976), a well-known
semantic data model. An example of the representation of the
spatial composition process using an ER data model is shown in
Fig 3. A placed miniature corresponds to an entity. A geometric
relationship occurs among the newly placed and existing objects.
Each placed miniature has three attributes: type, the angle
between the miniature and the white board’s long side, and the
ordinal number of the placement occurrence. Each relationship
has three attributes: the relation type, the connecting point, and
the difference between the ordinal numbers attached to the
objects. In addition, the IS-A hierarchies of the attributes based
on the inclusion relation among concepts are known in advance
(Figs. 4 and 5).

&

U

2nd  (wall ) ete.

attribute
bending

bending
ete. etc. =

object
Ist 3rd

R
ete.

relationship

parallel > etc. ete.

Fig. 3. Example of representation of spatial composition process using
ER data model
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4.2. FIRST-ORDER REPRESENTATION

The spatial composition process modeled as an ER model is
described as clauses in first-order logic. A predicate placement

placement(1001).
placement(1002).

placemeﬁt( 1091).
placement(1092).

was defined for each placement, predicates type and angle were

defined for each miniature, and a predicate relation was defined
for each relationship. The information described with placement
is used as an example, and the information described with type,
angle, and relation is used as background knowledge. An
example of the description is shown in Fig. 6.

5. Analysis

5.1. RESULTS OF ASMT EXPERIMENTS

One ASMT trial was individually conducted with 14 university
students trained in architectural design and 14 untrained

type(1001,lawn).

angle(1001,0).
relation(1001,isclation,none,no dif,no_obj).
type(1002,lawn).

angle(1002,0).
relation(1002,close,none,1,1001).

type(1091,broadleaf).
relation(1091,1i detach lp-1,top,32,1059).
relation(1091,1i detach lp-1,top,31,1060).
type(1092,door_wall).

angle(1092,90).

relation(1092,1i detach_l1-1,top,42, 1050).
relation(1092,t2_touch,top,36,1056).

university students. The participants composed their “dream”
house (Fig. 7).

Fig 6. Description of spatial composition process
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ID: t1, T: 46 min, PN: 92

ID:t2, T:28 min, PN:103 ID:t3, T:30 min, PN:96 1ID:t4, T:25 min, PN:133

ID: t5, T: 47 min, P\ 162 ID:t6, T:47 min, PN:175 ID:t7, T:58 min, PN:209

D:t8, T:79 min, PN:242 1ID:t9, T:27 min, ID: 10, T: 22 min, PN: T4

=\

D:t11, T:14 min, PN:72 ID:t12, T:46 min, PN:128 1D:t13, T:23 min, PN:115

ID: t14, T:63 min, PN: 124

ID:u2, T:29 min , PN:111 ID:w3, T:26 min, PN:71 1ID:u4, T:47 min, PN:72

ID:u5, T:56 min, PN:267 ID:uB, T:49 min, PN:153 ID:u7. T:19 min. PN:66

ID:ul0, T:19 min, PN:67

ID:u8, T:19 min, PN:77 1ID:u9, T:20 min, PN:43

ID:ul2, T:59 min, PN:192 1ID:ul3, T:55 min, PN:103

ID: ull, T:64 min, PN: 161

ID:ul4, T:51 min, PN:138

Fig. 7. Results of ASMT experiments with architecturally trained (left) and untrained students (right):
ID, participant ID, working time T (min.) of experiment, number of placements PN

5.2. LEARNING METHOD

Progol induced rules from the following two kinds of input data:

(1) Placements by the trained students were set as positive
examples and those by the untrained students were set
as negative examples.

(2) Placements by the untrained students were set as
positive examples and those by the trained students
were set as negative examples.

The rules induced from input data (1) and (2) indicate the

characteristic patterns of the trained students and untrained
students.

5.3. RESULTS OF PROGOL LEARNING

As a result, 513 and 458 rules were found from data (1) and (2).
The rules, whose Cov and CM were more than 0.5% and 2/14,
were regarded as common rules, where Cov means the coverage
of the rule and CM is the number of members whose placements
were set as positive examples and were covered by the rule. The
numbers of common rules of the trained and untrained students
were 30 and 28. The common rules of each group are shown in
Tables 1 and 2.
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6. Discussion

6.1. VALIDATION OF RULES

We measured the classification accuracy of unknown examples,
which had not been used for Progol learning, using five-fold
cross-validation (Weiss, 1990). The 28 experimental cases (Fig.
7) were split into five folds. Each fold contains cases by groups
of the same number. The examples containing four folds were set
as training examples from which Progol induced rules. The
examples contained in the remaining fold were used for
validation and classified as negative or positive using the
induced rules. The above procedures were repeated five times
while changing the combination of the folds. The predictive
accuracy of positive examples P4+ and negative examples PA-
was calculated by PA* = TP/P and PA~ = TN/N, where 7Pis
the number of correctly classified positive examples, TN is the
number of correctly classified negative examples, P is the total
number of positive examples for training, and N is the total
number of negative examples for training. The average of PA*
and PA- was calculated by F =2P*P~/(P*+ P7). The
predictive accuracies of the rules of the trained and untrained
students were 0.510 and 0.541.
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Table 1-1. Rules of trained students: IDs of rule R/D, number of positive examples covered by rule CE, coverage of rule Cov (%), number of members
whose placements are covered by rule CM, description of rules, and diagram of rules

RID \CE\Cov ()| CM Description of rules Diagram
A
R/ 83| 4.61 |6/14| placement (A):-type (A, column). o
3 e - separation E
placement (A):-type (A, separation), relation (A, vi_detach-r, root, B, C), %
Rr2 23| 1.28 |4/14 ' . ) A
relation (C, irreg, right, D, E). o
C
placement (A):-type (A, separation), angle (A, 0),
et | 22| L8 |\ HIR ntfon(A K Hetach:lpp,move, H.0). k%ﬂ“
placement (A):-relation (A, i_attach, top, B, C), G—+E
Rr 20| 1.11 |7/14| relation (C, irreg, right, D, E), relation (E, i_detach, top, F, G), wal
type (G, wall). T4
G
Rr5 120 1.11 |2/14| placement (A):-angle (A, ambiguous), relation (A, irreg, right, B, C). § iammms
A
placement (A):-relation (A, irreg, left, B, C), type (C, wall), 7'\_‘
#7619 105 (514 jotion (C, imreg, left, 12, D). i I
placement (A):-type (A, person), relation (A, close, none, B, C), A
Rr7 18| 1.00 |4/14]| relation (C, close, none, D, E), type (E, vegetation), @
relation (E, isolation, none, F, G). vegstation
placement (A):-type (A, separation), relation (A, t_attach, root, B, C), C?Ecw o
A8 | 17) 094 16/14) (0 (. separation), angle (C, 90). —
A . . . E -C
placement (A):-type (A, furniture), relation (A, irreg, right, B, C), —
&9 16| 0.89 |8/14) .1 iion (C, i_detach, top, D, E), type (E, wall). "
placement (A):-relation (A, irreg, left, B, C), type (C, wall), el
470|116 0.8 |4/14) L 2tion (C, bend_attach-l, root, 5, E), type (E, wall). ﬁuﬂlﬁjﬁ
placement (A):-type (A, wall), relation (A, irreg, right, B, C),angle (C,0),, ¢ e
Lt 13| 083 \BR) i don 0.1 attach efD.5). “ému H
placement (A):-type (A, separation), relation (A, irreg, right, B, C), Gfﬁ‘E
Rr/2115] 0.83 |7/14| type (C, separation), relation (C, irreg, left, D, E), C[ n
relation (E, bend_attach-r, top, F, G). separation L ion
A
Rr/7) 14| 0.78 |5/14| placement (A):-relation (A, irreg left,B,C), relation (C,i_detach,top,1.D).
D —— =D+l
placement (A):-type (A, wall), angle (A, 0), ecoa
Re/4) 13| 0.72 |7/14| relation (A, i_attach, top, B, C), relation (C, i_attach, top, D, E), f':':'wau wall
relation (E, irreg, left, F, G), type (G, wall). G
B
Rr/5) 13| 0.72 |9/14| placement (A):-relation (A, irreg, right, 1, B). [
A=B+1
A=B+8
Re/6) 13| 0.72 |9/14| placement (A):-type (A,wall), relation (A, irreg, left, 8, B). T "
B
placement (A):-relation (A, vi_detach-l, root, B, C), vit
R£277|12) 067 |54 o 1aion (C, irreg, left, D, B). @
placement (A):-relation (A, irreg, left, B, C), Gy LA
£418|12| 0.67 |5/14 relation (C, t_attach, right, D, E), relation (E, bend_attach-r, top, F, G). l Fe
placement (A):-relation (A, irreg, left, B, C), type (C, wall), G
Rr79) 12| 0.67 |7/14| relation (C, irreg, right, D, E), type (E, wall), angle (E, 90), el e
relation (E, bend_attach-r, top, F, G). Al
placement (A):-type (A, wall), relation (A, irreg, left, B, C), il ~
20112 0.67 |3/14 angle (C, 45). o
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Table 1-2. Rules of trained students (continuation of Table 1-1)

RID |CE | Cov (w) CM Description of rules Diagram
R27112) 067 |7/14 E{llagcizI?ce[,g)(.A):-relation (A, li_detach-r, root, B, C), type (C, out_door), A?ﬁf

ot 1] it [y e eim g B O e C D, | A
o ] oot sl Bemem @) s g i 8.0 e C, | T
224 11 061 12/14 placement (A):-relation (A, close, none, B, C), angle (C, 0), G

relation(C, close, none, D, E), relation (E, irreg, right, F, G), angle (G, 0)

placement (A):-relation (A, irreg, left, B, C),

£225110) 056 1314 1600 (C, i_attach, top, 10, D).

D ™ C=D+10
placement (A):-relation (A, irreg, left, B, C), type (C, wall), l Dﬂ
£26/10] 0.56 \4/14 angle (C, 90), relation (C, i_attach, root, 5, D). A C}I‘}:lj
placement (A):-relation (A, irreg, right, B, C), type (C, wall), | ey
27110 0.56 |2/14| relation (C, i_attach, top, D, E), relation (E, i_attach, root, F, G), —
relation (G, i_attach, top, H, I). E‘@“ﬁf
placement (A):-relation (A, irreg, right, B, C), angle (C, 90), D~
£:28) 10| 0.56 16/14 relation (C, bend_attach-r, top, 1, D). g
¢ C=E

placement (A):-type (A, vegetation), relation (A, li_detach-1, root, B, C),

£29)10) a6 \S/14 relation (C, i_attach, root, D, E).

A vegetation

placement (A):-relation (A, li_detach-r, root, B, C), A c
Rr30/ 10| 0.56 |7/14] relation (C, irreg, left, D, E), relation (E, i_attach, top, F, G), E
type (G, wall). G EE

Table 2-1. Rules of untrained students: IDs of rule RID, number of positive examples covered by rule CE, coverage of rule Cov (%), number of members
whose placements are covered by rule CM, description of rules, and diagram of rules

RID \CE\Cov ) CM Description of rules

placement (A):-relation (A, close, none, B, C), type (C, mat),
Rul | 56| 3.35 |8/14| relation (C, close, none, D, E), relation (E, close, none, F, G),
type (G, mat), relation (G, close, none, H, I), type (I, furniture).

placement (A):-angle (A, 0), relation (A, irreg, left, B, C),

42 |29) 173 (N4 - rabion (C, i_attach, top, 3, D).

placement (A):-relation (A, close, none, B, C), type (C, mat),

Al | 27| 11 81A relation (C, close, none, D, E), angle (E, 90).

placement (A):-relation (A, close, none, B, C), type (C, mat),
Rus | 26| 1.56 |6/14|relation (C, close, none, D, E), type (E, furniture), angle (E, 0),

relation (E, isolation, none, F, G). s
21250 150 514 placement (A):-type (A, furniture), relation (A, irreg, right, B, C), of el
‘ relation (C, i_attach, top, D, E), relation (E, li_detach-r, top, F, G). | s
placement (A):-relation (A, irreg, right, B, C), “ #( E
Rug | 21| 1.26 \8/14) L jation (C, b_detach-1, root, D, E), relation (E, i_attach, top, F, G). ¢[J1a
placement (A):-relation (A, irreg, left, B, C), A a5
Ru7|21| 1.26 |4/14|relation (C, i_attach, top, D, E), type (E, separation), L i
relation (E, li_detach-r, root, F, G), type (G, wall). o
out_door
placement (A):-type (A, out_door), relation (A, irreg, right, B, C), i
Rug 20| 1.20 \8/14) oration (C, bend_attach-r, root, D, E). il ]DE
placement (A):-type (A, furniture), relation (A, close, none, B, C), s
29 |20| 1.20 |7/14| type (C, mat), relation (C, close, none, D, E), type (E, mat), an
relation(E, isolation, none, F, G). isolaion
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Table 2-2. Rules of untrained students (continuation of Table 2-1)

RID | CE|Cov (%) CM Description of rules Diagram
placement (A):-type (A, mat), angle (A, 0), '33'
Rul0) 14| 084 1414 1o vion (A, ireg, left, B, C), type (C, wall). e
placement (A):-type (A, wall), relation (A, bend_attach-1, top, B, C), wall
el 13| I8 (68 famonie 1 itaeh soot, 1, . e
placement (A):-relation (A, i_attach, top, 1, B), type (B, wall), p
Rui2| 13| 0.78 |4/14| relation (B, i_attach, top, C, D), type (D, wall), angle (D, 0), F:;T;“ﬂ
relation (D, i_attach, top, E, F). -B+1
placement (A):-type (A, wall), relation (A, bend_attach-1, top, B, C), |
Rul3) 131 0.78 18/14) b (C, wall), relation (C, bend_attach-r, root, D, E), angle (E, 0). gll=
placement (A):-type (A, furniture), angle (A, 0), c wall
Ruld| 13| 0.78 17/14 relation(A, semi_reg, right, B, C), type(C, wall). Aﬁgjmm
E=F+2
placement (A):-relation (A, irreg, right, B, C), i
Rul3\ 13| 0.78 \S/14) L oyation (C, bend attach-, root, D, E), relation (E, i_attach, toot, 2, F). Cﬁ?
placement (A):-relation (A, irreg, left, B, C), o A
K6 12| 0.72 12/18) elation (C, bend_attach-r, top, D, E), angle (E, 45). A
placement (A):-relation (A, i_attach, top, B, C), type (C, wall), 4 -
Rul7| 12| 0.72 |5/14| angle (C, 90), relation (C, i_attach, top, D, E), e
relation (E, irreg, left, F, G). 4
placement (A):-angle (A, 0), relation (A, i_attach, root, B, C), G
Ru/8) 11| 0.66 |5/14] type (C, wall), relation (C, i_attach, root, D, E), 0 wall ;\>
relation (E, bend_attach-1, root, F, G). A=-C=F
placement (A):-relation (A, li_detach-1, root, B, C), 5
Ru/9 11| 0.66 |6/14] relation (C, bend_attach-r, top, D, E), Q?ﬁgé
relation (E, bend_attach-1, root, F, G). L
placement (A):-relation (A, irregular, left, B, C), A
K20 11| 0.66 |4/14| relation (C, i_attach, root, 1, E), relation (E, i_attach, root, 1, F), i%b
type (F, separation). e
placement (A):-type (A, separation), relation (A, irreg, right, B, C), ¢l
Ru2l| 111 066 16/14) 1elation (C, bend attach-1, root, 2, D), type (D, wall), cD?ﬂgmm
placement (A):-relation (A, irreg, left, B, C), & &
£u22| 101 060 1414 e lation (C, i_attach, top, D, E), relation (E, bend_attach-r, top, 2, F). | =1
placement (A):-angle (A, 90), relation (A, irreg, left, B, C), A e
Ru23| 10| 0.60 |3/14| relation (C, i_attach, top, 1, D), angle (D, 90), ; bor
relation (D, i_attach, top, E, F), relation (F, bend_attach-1, top, G, H). H—
placement (A):-relation (A, bend_attach-1, top, B, C), type (C, wall), 7 j
Au24) 101 0.60 \9/14) o)ation (C, bend_attach-r, top, D, E), relation (E, i_attach, top, F, G). i€
placement (A):-type (A, furniture), angle (A, 90), i
Ru25) 9 | 0.54 |4/14]| relation (A, irreg, right, B, C), type (C, wall), f1e flmite
relation (C, i_attach, top, D, E), relation (E, i_attach, top, F, G). &
placement (A):-relation (A, close, none, B, C), type (C, mat), i AC1
Ru26) 9 | 0.54 19/14 relation (A, close, none, 3, C).
1 W
placement (A):-angle (A, 90), relation (A, irreg, left, B, C), jLje
22?9 | 054 1314 g fion (€, i attsch, root, D, B), felation (B, i. attach, root, F, G). ot
o
placement (A):-type (A, furniture), angle (A, 0),
relation (A, irreg, right, B, C), angle (C, 0), F?D*C:E’«"
Ru28 9 | 0.54 16/14] relation (C, i_attach, top, 1, D), angle (D, 0), el =

relation (D, i_attach, top, E, F), type (F, wall).
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6.2. COMPARISON OF TWO GROUPS

By comparing the rules of the trained and untrained students,
four contrastive characteristics (Table 3) were found from the
following two viewpoints:
1. Attributes of miniatures and relationships that are
referred to in rules
2. Compressibility of the information with generalization
and predictive precision of rules
The details of these characteristics are discussed in the following
subsections.

6.2.1. Extension method of chain of miniatures

Ten of the 30 rules of trained students, Rt2-4, 9, 13, 17, 21, 23,
29, and 30, refer to noncontact relationships that indicate that the
miniatures don’t touch each other (e.g., “irreg,” “vi_detach,”
“i_detach,” and “li_detach”). On the contrary, only 4 of the 28
rules of untrained students, Ru5-7, and Rul9, refer to noncontact
relationships. 21 of the 28 rules of untrained students, Ru2, 5-§,
11-13, 15-25, 27, and 28, refer to contact relationships that
indicate that the miniatures touch each other (e.g., “i_touch” and
“bend_attach”). Only 11 of the 30 rules of trained students, R¢2-4,
9,13,17,21, 23, 29, and 30, refer to contact relationships. Fig. 8
illustrates these differences, which suggest that trained students
have a marked tendency to expand the chain of miniatures by
noncontact relationships and untrained students are more likely
to expand the chain of miniatures by contact relationships.

Number of rules
that refer to noncontact or contact relationships

0 5 10 15 20

= ¢ |
] D Noncontact -

= [f H Conac

Fig. 8. Comparing numbers of rules that refer to noncontact or contact
relationships

[ ] Trained students [ Untrained students

6.2.2. Relationship as basic unit of composition

Five rules of untrained students, Rull, 12, 20, 23, and 28,
indicate that a miniature is placed with an “i_attach” relationship
with a miniature that was just previously placed. This tendency
suggests that direct composition is a basic unit of the spatial
composition process for untrained students.

On the contrary, rules Rt6, 12, 19, and 24 of the trained
students show that three miniatures were frequently placed with
“semi_irreg” or “irreg” relationships, indicating miniatures that
are parallel to each other. This tendency suggests that parallel
composition is a basic unit of the spatial composition process of
trained students.

6.2.3. Types of miniatures

In both groups, the type of miniature most frequently referred to
in their rules is “wall.” A contrastive characteristic appears in the
second most frequently type of miniature mentioned,
“separation,” in the rules of trained students (Rz2, 3, 8, 12). In the
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rules of untrained students, the second most frequently referred
to types are “furniture” (Rul, 4, 5, 9, 14, 25, 28) and “mat” (Rul,
3, 4,9, 10, 26), which have equal ranks. The type “separation”
includes such vertical planes as walls, fences, and hedges, and
“mat” includes such horizontal planes as carpets, grass, and
tatami mats. From above, the process of enclosing and separating
spaces with walls characterizes trained students, and making the
surrounding living environment using furniture or mats
characterizes untrained students.

6.2.4. Compressibility of information and predictive accuracy of
rules

In the Progol learning of the process of architecturally trained
students, 1708 of 1801 positive examples were generalized. 513
rules were constructed, and 93 positive examples were not
generalized. This result means that information of the spatial
composition process by architecturally trained students was
compressed by generalization. Compressibility C is calculated by
C = (GP — R)/P , where GP is the number of positive examples
generalized, R is the number of rules, and P is the total number
of positive examples. Large compressibility means that the
spatial composition process by positive groups has strong
regularity. The compressibility of trained students is
(1708 — 513)/1708 = 0.664. For untrained students, 1509 of
1672 positive examples were compressed into 458 rules. The
compressibility is (1509 — 458) /1672 = 0.629. We infer from
this comparison of the compressibility of the two groups that the
spatial composition process by trained students has stronger
regularity than by untrained students.

By comparing the predictive accuracy of the two groups
mentioned in Section 6./, we recognize that predicting
placements by trained students is more difficult than by
untrained students.

We can interpret the differences of compressibility and
predictive accuracy between the two groups as follows. Since
architecturally trained students have strong regularity of spatial
composition, many and various patterns appear in their processes.
But their rules are so various that predicting their arrangements is
difficult. In contrast, untrained student have less regularity of
spatial composition and identical patterns appear many times in
their processes; their arrangements are comparatively easy to
predict.

Table 3 Contrastive characteristics between trained and untrained

students

Trained Untrained

extension method of H‘:l I:l:l

chain of miniatures <::>

out of contact in contact

relationship as basic unit f— <::> ==

of composition " ;
parallel straight

@ > & &
mat and furniture

multiplicity of rules multiple less multiple

7. Conclusions

Inductive logic programming (ILP), which is a machine
learning technique that executes inductive reasoning, was applied
to the analysis of spatial composition processes using an
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architectural space montage technique (ASMT).

The complexly structured data of spatial composition
processes that consist of many objects, relationships between
them, and their attributes were modeled in first-order logic.

One ASMT experiment was conducted with 14
architecturally trained students and 14 untrained students. These
experimental cases were analyzed by Progol, which is an ILP
system. 513 rules for the trained students and 458 for the
untrained students were found. From these rules, contrastive
characteristics were defined between the two groups from four
points of view: (1) extension method of chain of miniatures, (2)
relationship as basic unit of composition, (3) type of miniature,
and (4) multiplicity of rules. In the future, we will analyze the
spatial composition process among different cultures using our
proposed method.
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