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Abstract: Inductive logic programming was applied to the analysis of spatial composition processes using an architectural space 
montage technique. The complexly structured data of the spatial composition processes that consist of many objects, their 
relationships, and their attributes were modeled with first-order logic. One architectural space montage technique experiment was 
conducted on 14 architecturally trained students and on 14 untrained students. These experimental cases were analyzed by Progol, 
which is one ILP system. 513 rules for the trained students and 458 for the untrained students were found. By comparing these rules, 
we found contrastive characteristics between the two groups from four points of view: (1) extension method of chain of miniatures, 
(2) relationship as basic unit of composition, (3) type of miniature, and (4) multiplicity of rules. 

1. Introduction 

In this study, the process of architectural design was analyzed by 
inductive logic programming (ILP) (Muggleton and Raedt, 1994; 
Lavrac and Dzeroski et al., 1999), which is a machine learning 
technique based on first-order logic that executes inductive 
reasoning and generalizes the results from examples to generate 
new concepts. 

In various contexts, it has been reported in the domain of 
phenomenology or developmental psychology that humans have 
unconscious spatial schemata that enable them to recognize 
space (Merleau-Ponty, 1945; Piaget, 1963). In support of this 
theory, it has been proposed that the human design process is 
affected by such schemata that appear as the compositional 
patterns of such architectural elements as walls, furniture, 
buildings, and so on (Schulz, 1971; Bollnow, 1963). These 
spatial schemata and compositional patterns could be important 
factors to form culture. To create an architectural space suitable 
for human recognition, to re-interpret existing architectures and 
to understand culture, we must find the latent patterns of spatial 
composition affected by the spatial schemata from a 
psychological point of view. This is currently a key issue in the 
architectural field. 

From the above context, this study investigates the patterns 
in the initial process of architectural design, which visualizes 
individual mental images. We previously focused on discovering 
the peculiar patterns of the architectural design process of 
architecturally trained and untrained individuals (Sugiura and 
Okazaki, 2002) and the relationship among their patterns and 
Japanese architecture and landscapes (Sugiura and Okazaki, 
2011). This paper focuses on the contrastive characteristics 
between two groups. 

Several studies on architectural design patterns have been 
done. For example, the Shape-Grammar was defined as a set of 
production rules that can generate floor plans in F. L. Wright’s 
architectural style (Koning et al., 1981). The Shape-Grammar, 

however, does not reflect the actual design process. In this paper, 
actual design processes using an architectural space montage 
technique (ASMT) were analyzed. 

ASMT was developed by one of the authors to elucidate the 
fundamental patterns of spatial composition that exist in human 
beings. In an experiment using ASMT, participants composed 
architectural spaces by placing such miniatures as walls and 
furniture at a scale of 1:50 on a white board (Fig. 1). In this study, 
we regarded a spatial composition process using this method as 
an initial process of architectural design, which is the process of 
visualizing individual mental images. 
 

  
Fig. 1. Examples of models constructed using ASMT by an 

undergraduate (left) and a kindergartener (right) 
 

In one ASMT experiment, dozens to hundreds of miniatures 
can be placed. Moreover, a newly placed miniature has many 
relationships to the previously placed miniatures. It is difficult to 
discover patterns by only relying on human inspection in such 
complexly structured data as those in the spatial composition 
process. Therefore, in this study, we applied Progol, one ILP 
system, to identify the latent patterns of the spatial composition 
process in ASMT. ILP has been applied to various fields, 
including finding the patterns from spatial relational structures 
(e.g., graphic design of magazine (Chiba, 1999), room 
arrangements in a house (Mizoguchi, 1995), and molecular 
models (King, 1995)). However, there has been no study that 
tried to apply ILP to learning from such structures that include 
ordinal relationships as the spatial composition process. 
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ID: t1,  T: 46 min,  PN: 92                                                                                                  ID: u1,  T: 60 min,  PN: 149 

 
Fig. 7. Results of ASMT experiments with architecturally trained (left) and untrained students (right): 

ID, participant ID, working time T (min.) of experiment, number of placements PN 
 

5.2. LEARNING METHOD 

Progol induced rules from the following two kinds of input data: 
(1) Placements by the trained students were set as positive 

examples and those by the untrained students were set 
as negative examples. 

(2) Placements by the untrained students were set as 
positive examples and those by the trained students 
were set as negative examples. 

The rules induced from input data (1) and (2) indicate the 
characteristic patterns of the trained students and untrained 
students. 

5.3. RESULTS OF PROGOL LEARNING 

As a result, 513 and 458 rules were found from data (1) and (2). 
The rules, whose Cov and CM were more than 0.5% and 2/14, 
were regarded as common rules, where Cov means the coverage 
of the rule and CM is the number of members whose placements 
were set as positive examples and were covered by the rule. The 
numbers of common rules of the trained and untrained students 
were 30 and 28. The common rules of each group are shown in 
Tables 1 and 2.  

6. Discussion 

6.1. VALIDATION OF RULES 

We measured the classification accuracy of unknown examples, 
which had not been used for Progol learning, using five-fold 
cross-validation (Weiss, 1990). The 28 experimental cases (Fig. 
7) were split into five folds. Each fold contains cases by groups 
of the same number. The examples containing four folds were set 
as training examples from which Progol induced rules. The 
examples contained in the remaining fold were used for 
validation and classified as negative or positive using the 
induced rules. The above procedures were repeated five times 
while changing the combination of the folds. The predictive 
accuracy of positive examples PA� and negative examples PA‐ 
was calculated by ���  �  �� �⁄  and PA� � TN N⁄ , where TP is 
the number of correctly classified positive examples, TN is the 
number of correctly classified negative examples, P is the total 
number of positive examples for training, and N is the total 
number of negative examples for training. The average of PA� 
and PA‐ was calculated by � � ����� ��� � ���⁄ . The 
predictive accuracies of the rules of the trained and untrained 
students were 0.510 and 0.541. 
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Table 1-1. Rules of trained students: IDs of rule RID, number of positive examples covered by rule CE, coverage of rule Cov (%), number of members 
whose placements are covered by rule CM, description of rules, and diagram of rules 
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Table 1-2. Rules of trained students (continuation of Table 1-1) 

 
 

Table 2-1. Rules of untrained students: IDs of rule RID, number of positive examples covered by rule CE, coverage of rule Cov (%), number of members 
whose placements are covered by rule CM, description of rules, and diagram of rules 
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Table 2-2. Rules of untrained students (continuation of Table 2-1) 
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6.2. COMPARISON OF TWO GROUPS 

By comparing the rules of the trained and untrained students, 
four contrastive characteristics (Table 3) were found from the 
following two viewpoints: 

1. Attributes of miniatures and relationships that are 
referred to in rules 

2. Compressibility of the information with generalization 
and predictive precision of rules 

The details of these characteristics are discussed in the following 
subsections. 

6.2.1. Extension method of chain of miniatures 

Ten of the 30 rules of trained students, Rt2-4, 9, 13, 17, 21, 23, 
29, and 30, refer to noncontact relationships that indicate that the 
miniatures don’t touch each other (e.g., “irreg,” “vi_detach,” 
“i_detach,” and “li_detach”). On the contrary, only 4 of the 28 
rules of untrained students, Ru5-7, and Ru19, refer to noncontact 
relationships. 21 of the 28 rules of untrained students, Ru2, 5-8, 
11-13, 15-25, 27, and 28, refer to contact relationships that 
indicate that the miniatures touch each other (e.g., “i_touch” and 
“bend_attach”). Only 11 of the 30 rules of trained students, Rt2-4, 
9, 13, 17, 21, 23, 29, and 30, refer to contact relationships. Fig. 8 
illustrates these differences, which suggest that trained students 
have a marked tendency to expand the chain of miniatures by 
noncontact relationships and untrained students are more likely 
to expand the chain of miniatures by contact relationships. 

 

 
Fig. 8. Comparing numbers of rules that refer to noncontact or contact 

relationships 

6.2.2. Relationship as basic unit of composition 

Five rules of untrained students, Ru11, 12, 20, 23, and 28, 
indicate that a miniature is placed with an “i_attach” relationship 
with a miniature that was just previously placed. This tendency 
suggests that direct composition is a basic unit of the spatial 
composition process for untrained students. 

On the contrary, rules Rt6, 12, 19, and 24 of the trained 
students show that three miniatures were frequently placed with 
“semi_irreg” or “irreg” relationships, indicating miniatures that 
are parallel to each other. This tendency suggests that parallel 
composition is a basic unit of the spatial composition process of 
trained students.  

6.2.3. Types of miniatures 

In both groups, the type of miniature most frequently referred to 
in their rules is “wall.” A contrastive characteristic appears in the 
second most frequently type of miniature mentioned, 
“separation,” in the rules of trained students (Rt2, 3, 8, 12). In the 

rules of untrained students, the second most frequently referred 
to types are “furniture” (Ru1, 4, 5, 9, 14, 25, 28) and “mat” (Ru1, 
3, 4, 9, 10, 26), which have equal ranks. The type “separation” 
includes such vertical planes as walls, fences, and hedges, and 
“mat” includes such horizontal planes as carpets, grass, and 
tatami mats. From above, the process of enclosing and separating 
spaces with walls characterizes trained students, and making the 
surrounding living environment using furniture or mats 
characterizes untrained students. 

6.2.4. Compressibility of information and predictive accuracy of 
rules 

In the Progol learning of the process of architecturally trained 
students, 1708 of 1801 positive examples were generalized. 513 
rules were constructed, and 93 positive examples were not 
generalized. This result means that information of the spatial 
composition process by architecturally trained students was 
compressed by generalization. Compressibility C is calculated by 
� � ��� � �� �⁄  , where GP is the number of positive examples 
generalized, R is the number of rules, and P is the total number 
of positive examples. Large compressibility means that the 
spatial composition process by positive groups has strong 
regularity. The compressibility of trained students is 
����� � ���� ����⁄ � �����. For untrained students, 1509 of 
1672 positive examples were compressed into 458 rules. The 
compressibility is ����� � ���� ����⁄ � �����. We infer from 
this comparison of the compressibility of the two groups that the 
spatial composition process by trained students has stronger 
regularity than by untrained students. 

By comparing the predictive accuracy of the two groups 
mentioned in Section 6.1, we recognize that predicting 
placements by trained students is more difficult than by 
untrained students. 

We can interpret the differences of compressibility and 
predictive accuracy between the two groups as follows. Since 
architecturally trained students have strong regularity of spatial 
composition, many and various patterns appear in their processes. 
But their rules are so various that predicting their arrangements is 
difficult. In contrast, untrained student have less regularity of 
spatial composition and identical patterns appear many times in 
their processes; their arrangements are comparatively easy to 
predict. 

 
Table 3 Contrastive characteristics between trained and untrained 

students  

 

7. Conclusions 

Inductive logic programming (ILP), which is a machine 
learning technique that executes inductive reasoning, was applied 
to the analysis of spatial composition processes using an 
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architectural space montage technique (ASMT). 
The complexly structured data of spatial composition 

processes that consist of many objects, relationships between 
them, and their attributes were modeled in first-order logic.  

One ASMT experiment was conducted with 14 
architecturally trained students and 14 untrained students. These 
experimental cases were analyzed by Progol, which is an ILP 
system. 513 rules for the trained students and 458 for the 
untrained students were found. From these rules, contrastive 
characteristics were defined between the two groups from four 
points of view: (1) extension method of chain of miniatures, (2) 
relationship as basic unit of composition, (3) type of miniature, 
and (4) multiplicity of rules. In the future, we will analyze the 
spatial composition process among different cultures using our 
proposed method. 
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