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Abstract: The continuous column (C.C.) effects, in which elastic columns continuous over structural height prevent story failure 
mechanism and mitigate the drift concentration in particular stories during earthquakes for steel, reinforced concrete and wooden 
frame structures. The coupled shear-flexural-beam models, which was proposed and investigated by the author, are simplified models 
consisting with a shear-beam and a flexural-beam that can consider the C.C. effects explicitly. In this paper, the stiffness matrices of 
the shear-beam, the flexural-beam and that of the coupled shear-flexural-beam model are derived and their characteristics are 
investigated in terms of the stability. The eigenvalue analyses are conducted for the 2- and 3-story coupled shear-flexural-beam models 
at the elastic stage and the assumed 1st-story mechanism is investigated quantitatively to evaluate the C.C. effects on static stability of 
entire structure.   

1. Introduction 

Elastic columns and multi-story walls that are continuous over the 
structural height mitigate the drift concentration in the particular 
stories, prevent the story failure mechanism, and increase the 
stability during the earthquakes. This is referred to as the 
continuous column (C.C.) effects. Using the coupled shear-
flexural-beam models as shown in Figure 1, it was verified that 
each story drift angle becomes more uniform as the flexural 
stiffness of the flexural-beam increases for steel, reinforced 
concrete frame structures subjected to earthquake motions. In this 
paper, the stiffness matrices of the shear-beam, flexural-beam and 
the coupled shear-flexural-beam model are derived and their 
characteristics are investigated in terms of the stability. 
Eigenvalue analyses are conducted for 2- and 3-story coupled 
shear-flexural-beam models to evaluate the C.C. effects on static 
stability. This C.C. effects may be related to a mystery of Japanese 
wooden five-story pagodas with a Shinbashira, penetrating a 
center of the tower, which have not been collapsed until now even 
subjected to massive earthquakes.  

 
Figure 1. Coupled shear-flexural-beam model 

2. Stiffness matrix of coupled shear-flexural-beam models 

2.1. SHEAR-BEAM MODEL 

Stiffness matrices of 2-, 3- and n-story shear-beam models as 
shown in Figure 2 are derived and these are investigated in terms 
of static stability. 

 
(a) 2-story            (b)  3-story         (c) n-story 

Figure 2.  Shear-beam models 

We will start with a 2-story shear-beam model as shown in Figure 
2(a). Here, k1 and k2 is the stiffness of the 1st- and 2nd-story 
horizontal springs. The masses of the 1st- and 2nd-story are 
subjected to horizontal forces, R1 and R2, resulting in the 
horizontal displacements, u1 and u2, respectively. The relations of 
the horizontal forces and the displacements are given by (1). 
Therefore, the stiffness matrix of a 2-story shear-beam model, K, 
is given by (2). 
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The determinant of the stiffness matrix K is calculated as (3). 

2 2 1 2 2 2 2 1 2det k k k k k k kK        (3) 

The eigenvalues of K can be calculated as the solutions of the 
characteristic equation FK(x) defined by (4). E is the identity 
matrix. 
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The eigenvalues, 1 and 2, of K are the solutions for 0KF x  
and given by (5). 
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                                      (5) 

If the values of k1 and k2 are positive, the determinant detK (=k1k2) 
given by (3) and the two eigenvalues 1 and 2 given by (5) 
become positive, suggesting that structural system is stable. 

Similarly, stiffness matrix of a 3-story shear-beam model as 
shown in Figure 2(b), K, is given by (6). 
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The determinant of K3 3 is calculated as (7). 
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Stiffness matrix of the n-story shear-beam model, n nK , is given 
by (8). It is well known that stiffness matrix of a shear-beam model 
is banded. 
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The determinant of n nK  can be found using the mathematical 

induction. Assume that 1 2
1

det
n

n n n i
i

k k k kK     (9) 

For n=2, 3, (9) is true as given by (3) and (7). Assumed that (9) is 
true for (n-1), then,  
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The determinant of n nK is related to 1 1n nK as (11). 
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As a result, the determinant of stiffness matrix of a n-story shear-
beam model is given by (12). 

1 2
1

det
n

n i
i

k k k kK          (12) 

This equation suggests that if any ki becomes zero, the determinant 
of stiffness matrix becomes zero, then structural system becomes 
unstable. 

The relation of the eigenvalues of n nK and stiffness values of 
horizontal springs is investigated. The characteristic polynomial is 
given by (13). Here, 1 2, , n  are the eigenvalues of n nK . 

Letting x 0 , KF 0  is expressed by both (14) and (15). 

1 2detK n nF x x x x xE K     (13) 
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Therefore, (16) is derived. 

1 2det nK                                              (16) 

From (12) and (16), (17) is derived. 
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Although it seems that i ik , this is not true. This is since this 
is not satisfied for a 2-story shear-beam model as shown in (5). 

2.2. FLEXURAL-BEAM MODEL 

2.2.1. Flexural-beam supported by a pin 

Stiffness matrices of 2-, 3-story flexural-beams supported by a pin 
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at the basement as shown in Figure 3 are derived as follows.  

 
(a) 2-story                (b)  3-story 

Figure 3.  Flexural-beam supported by a pin 
 
For one Bernoulli-Euler beam-element as shown in Figure 4, the 
relations of the forces, moments 1 1 2 2, , ,t Q M Q M and the 

displacements, rotations 1 1 2 2, , ,t u u  are given by (18). Here, E 
is the elastic modulus, I is the moment of inertia and L is the length 
of the element. 
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Figure 4.  Beam element 

 
2 beam-elements 
The relations of the forces, moments and the displacements, 
rotations of 2 beam-elements connected to each other as shown in 
Figure 5 are obtained by assembling the stiffness matrices of 2 
beam-elements, as given by (19). Here, for clarity, the following 
symbols are defined as 

312 /EL L ,  26 /EI L ,  2 /EI L . 

 
Figure 5.  3 beam-elements connected 
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In order to conduct the static condensation and find the relations 
of forces and displacement using the condition of M 0 , (19) is 
arranged to obtain (20), which can be expressed by (21). 
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Since M 0 , (23) is derived. 
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Substitute (23) into (21) and (24) is derived. 
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As a result, the relations of the forces and displacements are 
derived as (26). 
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Since 0 0u  as shown in Figure 3(a), letting 0 0u  in (26), the 

relations of the forces 1 2,t Q Q and displacements 1 2,t u u  are 
derived as (27). Stiffness matrix Kf of the model as shown in 
Figure 3(a) is given by (28). 
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The determinant of Kf is calculated by (29) and is equal to zero 
suggesting that a flexural-beam supported by a pin at the basement 
is unstable itself. 
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3 beam-elements 
Similarly, the relations of the forces, moments and the 

displacements, rotations of 3 beam-elements connected to each 
other as shown in Figure 6 are obtained by assembling the stiffness 
matrices of 3 beam-elements, as given by (30). 

 
Figure 6.  3 beam-elements connected 
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(30) 
Rearranging the terms according to the array of the forces, 
moments and the displacements and rotations, (31) is derived. 
This can be expressed by (32). 
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(31) 
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Since M 0 , (34) is derived. 

1
11 12 22 21 3

1.6 3.6 2.4 0.4
3.6 9.6 8.4 2.4

2.4 8.4 9.6 3.6
0.4 2.4 3.6 1.6

EI
L

K K K K             (34) 

Since 0 0u in Figure 3(b), the relations of forces and 
displacements are given by (35) and then stiffness matrix Kf of the 
model as shown in Figure 3(b) is given by (36). 
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The determinant of Kf is calculated as (37) and is equal to zero 
suggesting that a flexural-beam supported by a pin at the basement 
is unstable itself. 
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2.2.2. Flexural-beam fully fixed at the basement 

Stiffness matrices of 2-, 3-story flexural-beams fully fixed at the 
basement as shown in Figure 7 are derived as follows. 

 
(a) 2-story            (b)  3-story         

Figure 7.  Flexural-beam fully fixed at the basement 
 
2 beam-elements 
The relations of the forces, moments and the displacements, 
rotations of 2 beam-elements connected to each other as shown in 
Figure 5 are obtained by assembling the stiffness matrices of 2 
beam-elements, as given by (19).  In a 2-story flexural-beam 
model as shown in Figure 7(a), since 0 00, 0u , (38) is 
derived, which can be expressed by (39). 
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Since M 0 , stiffness matrix Kf of the model as shown in Figure 
7(a) is derived as (41). 
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11 12 22 21 3
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The determinant of Kf is calculated by (42) and this is positive 
suggesting that a flexural-beam fixed at the basement is stable. 
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3 beam-elements 
Stiffness matrix of 3-story flexural-beam fully-fixed at the 
basement as shown in Figure 7(b) is derived as follows. Since 

0 00 0,u , the relations are derived as (43). 
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K11, K12, K21, K22 in the form of (39) are as follows. 
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Stiffness matrix Kf is derived as (45). 
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(45)  
The determinant of Kf is calculated as (46) and this is positive. 
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(46) 

2.3. COUPLED SHEAR-FLEXURAL-BEAM MODEL 

Stiffness matrices of the 2- and 3-story coupled shear-flexural-
beam models as shown in Figures 8 and 9 are derived as follows. 
The shear-beam and flexural-beam are connected to each other 
with rigid link at each floor level.  

 

(a) 2-story                            (b)  3-story 
Figure 8.  Coupled shear-flexural-beam models (pin-supported) 

 

(a) 2-story                            (b)  3-story 
Figure 9.  Coupled shear-flexural-beam models (fully-fixed) 

The displacements at the same floor level of the shear-beam and 
flexural-beam in the coupled shear-flexural-beam model are 
identical and then (47) is derived. The forces of the coupled shear-
flexural-beam model is a sum of forces of the shear-beam and 
forces of the flexural-beam and then (48) is derived. 
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The relations of the force and displacements of 2-story coupled 
shear-flexural-beam model with a pin-supported flexural-beam is 
derived as (49). Therefore, stiffness matrix is given by (50). 
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Similarly, stiffness matrix of 3-story coupled shear-flexural-beam 
model with a pin-supported flexural-beam is derived as (51). 

1 2 2

2 2 3 3 3

3 3

0 9.6 8.4 2.4
8.4 9.6 3.6

0 2.4 3.6 1.6

k k k
EIk k k k
H

k k
K   (51) 

When the flexural-beam is fully fixed at the basement, 
stiffness matrices of 2-, 3-story coupled shear-flexural-beam 
models are given by (52), (53), respectively. 

1 2 2
3

2 2

96 30
7 7
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7 7

k k k EI
k k H

K       (52) 

1 2 2

2 2 3 3 3

3 3

240 138 36
13 13 130
138 132 48
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0 36 48 21
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k k k
EIk k k k
H

k k
K   (53) 

3. Static stability of coupled shear-flexural-beam models 

In order to evaluate static stability of the coupled shear-flexural-
beam model, eigenvalue analyses are conducted. Eigenvalue 
problem is solved using (54). Here, i  is the ith-mode eigenvalue 
of stiffness matrix K normalized by mass matrix M, which is equal 
to a square of the ith-mode natural frequency, i . The ith-mode 
natural period Ti is calculated as (55). 

det 0iK M     where, 2
i i                 (54) 

2
i

i

T                  (55) 

The stiffness of each story in the shear-beam model is calculated 
using (56), which provides uniform distribution of the story drift 
angles for specified horizontal forces added at ith-floor, fi. Here, mi 
is i-story mass, hi is ith-floor height. The 1st-natural periods, T, are 
set to 0.24 sec and 0.36 sec for 2- and 3-story models, respectively. 

2
2

1
2
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4
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ji i
j ii
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i i
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fm h
k

T h hf h
                    (56) 

Each story stiffness of 2- and 3-story shear-beam model is 
calculated as (57), (58), respectively, assuming that all masses are 
equal to m, each story height is equal to H, and horizontal forces 
added at ith-floor, fi are an inverted triangle distribution. 

2 22 2 2

1 22 2 2

4 24 12 8,
4

m H H f f m mk k
T fH fH H T T

 (57) 
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2 2
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T fH fH fH H T
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The natural periods of 2- and 3-story models are calculated for 
various flexural-stiffness ratio, cc, defined by (59). Here, EI is the 
flexural stiffness of the flexural-beam, H is a story height and k1  
is the initial stiffness of the 1st-story in the shear-beam.  

3

1
cc

EI H
k

                                       (59) 

The natural periods for all modes for 2- and 3-story coupled shear-
flexural-beam models with a pin-supported or fully-fixed flexural-
beam are plotted in Figure 10. As cc increases, the 1st-mode 
natural period of the model with a pin-supported flexural-beam 
does not decrease since the pin-supported flexural-beam rotates 
rigidly. However, higher-mode natural periods decrease. For the 
model with a fully-fixed flexural-beam, the natural periods of all 
modes decrease. Therefore, a pin-supported flexural-beam 
increases the stability for all modes except the 1st-mode, and a 
fully-fixed flexural-beam increases the stability for all modes. 

  
(x-axis: cc, y-axis: natural period (sec), red: pin-supported, blue: fixed) 

(a) 2-story                                    (b)  3-story 
Figure 10.  Natural periods (at elastic) 

The eigenvalue analyses are conducted for 2- and 3-story models 
with assumed 1st-story mechanism, setting the 1st-story tangent 
stiffness of the shear-beam to zero. The instantaneous eigenvalues 
are plotted for various cc in Figure 11. As cc increases, the 
eigenvalues of all modes increase, suggesting that the flexural-
beam increases the stability of entire structure under the story-
mechanism in a particular story, activating the C.C. effects. 

  
(x-axis: cc, y-axis: i (1/sec2) , red: pin-supported, blue: fixed) 
(a) 2-story                                    (b)  3-story 

Figure 11. Instantaneous eigenvalues (at 1st-story mechanism) 

4. Conclusions 

The stiffness matrices of a shear-beam, flexural-beam, and the 
coupled shear-flexural-beam model derived. Eigenvalue analyses 
are conducted for 2- and 3-story coupled shear-flexural-beam 
models at elastic state or assumed 1st-story mechanism to 
demonstrate the C.C. effects on static stability of entire structure. 

The coupled shear-flexural-beam model used in this study can 
simulate the story-failure, which was observed for piloti-type RC 
buildings and wooden houses in the 1995 Hyogoken-Nanbu 
earthquake. The pancake collapse, which was typically observed 
in the 2023 Turkey-Syria earthquake, is similar to the story-failure, 
accompanied by progressive collapse from the top to the bottom. 
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